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LETTER TO THE EDITOR

Absorption time in certain urn models
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48/49, Poznán, Poland

Received 6 December 1996

Abstract. We show that the average absorption timeτ in a certainM-urn model recently
introduced by Ritort in the context of glassy dynamics has a lower bound 2N−1+N − 3, where
N is the number of balls. A Monte Carlo scheme, which accurately estimates the absorption
time even whenτ ∼ 1012, indicates that for largeN we haveτ ∼ 2N .

The urn models have played a very important role in formulating such fundamental concepts
of statistical mechanics such as equilibrium, an approach to equilibrium or fluctuations out
of equilibrium [1]. One of the most intensively studied urn models was the Ehrenfest model
(‘dog–flea’ model). In this model distinguishable balls are placed in two urns. In each time
step a randomly chosen ball is taken from one urn and put into the other one. In this model,
which is actually equivalent to a certain random walk, a lot of quantities can be calculated
exactly [2].

Recently, Ritort has introduced a multistate Potts model which describes slow dynamics
encountered in glasses [3]. At the ground state the dynamics of this model is equivalent to
a certainM-urn model which in turn can be mapped into a biased random walk [4]. This
M-urn model is defined as follows. Let us considerN balls initially distributed among
M boxes. At each time step a randomly chosen ball is moved to another non-empty box
chosen randomly.

It is clear that once a box becomes empty it remains such forever and thus the number of
non-empty boxes decreases until all balls are placed in one box. It is also easy to realize that
the number of non-empty boxes decreases with a slower and slower rate because emptying
a box with a few balls and placing them into boxes of larger occupancy is a highly unlikely
event.

It is this slow dynamics which bears some resemblance to the dynamics of glasses. This
model shows that entropic barriers alone might be responsible for the slow dynamics but in
real glasses one expects that energetic barriers are also present and relevant.

One of the important characteristics of this model is the average absorption timeτ

which is needed to put all balls in one box; this quantity corresponds to the time needed to
bring a glass to the ground state. Ritort’s Monte Carlo results, based on simulations with
N 6 20, suggest that for largeN one hasτ ∼ e0.67N .

In the present letter we obtain a lower bound forτ which is in fairly good agreement with
Ritort’s Monte Carlo results. Our lower bound is actually based on the exact solution for the
absorption time for the 2-urn model. To our knowledge this is a new result. Moreover, the
exact solution for the 2-urn model (given as a recursive sequence) enabled us to construct
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a Monte Carlo scheme which precisely measuresτ for systems even twice as large as those
considered by Ritort.

First let us consider the caseM = 2 and the initial configuration with one ball in the
first urn andN − 1 balls in the second urn. In such a case the average timeτ2(1, N − 1)
needed to place all balls in one box is

τ2(1, N − 1) = 2N−1− 1. (1)

This result will be proven below.
However, when balls are initially distributed amongM > 2 boxes, the absorption time

τM(N) has to be strictly greater than equation (1). Indeed, since such a process has to pass
through the configuration at least once with all but one ball in one box we have

τM(N) = τ ′M(N)+ τ2(1, N − 1) (2)

whereτ ′M(N) > 0 is the average time needed to reach the configuration with all but one
ball in one box. For example, if initially there is one ball in each ofN boxes, then the
lower bound forτ ′N(N) is N − 2 and in such a case we obtain

τN(N) > 2N−1+N − 3. (3)

Now we proceed to determineτ2(k,N − k), i.e. the absorption time for the initial
configuration ofk andN − k balls in each urn. First, let us consider the caseN = 3. In
this caseτ2(1, 2) has to satisfy the equation

τ2(1, 2) = 1
3 · 1+ 2

3(τ2(1, 2)+ 1). (4)

The right-hand side of (4) means that with the probability1
3 the process will terminate (i.e.

a ball from the box occupied by only one ball will be moved to the other box) and with
the probability 2

3 the system will remain in the same configuration (with the occupancy of
boxes interchanged). The solution of (4) isτ2(1, 2) = 3, in agreement with (1).

ForN = 4 the following set of equations is the analogue of (4)

τ2(1, 3) = 1
4 · 1+ 3

4(τ2(2, 2)+ 1)

τ2(2, 2) = τ2(1, 3)+ 1 (5)

with the solutionτ2(1, 3) = 7 andτ2(2, 2) = 8.
In the case of arbitrary evenN we obtain the following set ofN/2 equations:

τ2(1, N − 1) = 1

N
+ N − 1

N
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τ2(2, N − 2) = 2

N
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N
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. . .
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For oddN the set of equations is the same except that the last equation has the form
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We did not succeed in writing a solution of (6) in a compact form for arbitraryτ2(k,N−k).
However, forτ2(1, N−1) the solution can be found easily. One can check that multiplying

the first equation byN , the second one byN(N − 1)/2 =
(
N

2

)
, . . ., the last but one by(

N

N − 1

)
, and the last one by12

(
N

N/2

)
, and summing all equations we obtain that all

τ2(k,N − k) with k > 1 cancel and the remaining terms give

τ2(1, N − 1) =
(
N

1

)
+
(
N

2

)
+ · · · +

(
N

(N/2)− 1

)
+ 1

2

(
N

N/2

)
= 2N−1− 1. (8)

Once we have foundτ2(1, N − 1) we can easily write the recursive solution of (6):

τ2(1, N − 1) = 2N−1− 1

τ2(2, N − 2) = N(τ2(1, N − 1)+ 1)− 2N

N − 1

τ2(k,N − k) = Nτ2(k − 1, N − k + 1)− (k − 1)τ2(k − 2, N − k + 2)−N
N − k + 1

(9)

wherek = 3, 4, . . . , N/2.
To confront the bound (3) with the behaviour ofτN(N) we performed Monte Carlo

simulations. However, using the exact solution (9) we were able to make our algorithm
very efficient. The basic idea of this hybrid algorithm is as follows. Initially, eachN

boxes is occupied by one ball. Then we simulate the dynamics of the system until there
are two non-empty boxes. Provided that their occupancy at the moment of reaching such a
situation isk andN − k, we add to the time of this particular run the average time needed
to terminate the process, i.e.τ2(k,N − k) (these numbers can be generated at the beginning
of the program and stored in a memory). ForN 6 20 we checked our algorithm against
the ordinary algorithm which simulates the dynamics until all balls are placed in one box
and we obtained very good agreement.

Since the absorption time rapidly increases withN , simulating larger systems with the
ordinary algorithm is rather difficult. In contrast, using the hybrid algorithm we were able
to simulate systems up toN = 40 for which the absorption time is of the order of 1012(!).
Our simulations have been performed on a personal computer and simulating systems with
largerN is obviously feasible.

The reason why this algorithm is so efficient is that, as will be shown below, for large
N the time needed to decrease the number of non-empty boxes to two becomes negligibly
small compared to the time needed to terminate the process and our program runs only in
the first interval.

Our results are shown in figure 1. ForN < 20 averages are made over 106 independent
runs. For largerN we usually average over 104 runs but in this case even less extensive
statistics gives accurate results. This is because for largeN dominant contributions toτN(N)
come fromτ2(k,N − k) and, as we already mentioned, we calculate this number exactly.

An almost linear increase of the logarithm ofτN(N) as a function ofN confirms its
exponential divergence. Least-squares fitting to the results withN = 20, . . . ,40 gives
τN(N) ∼ 0.54 e0.693N , which as for the exponential part is in fairly good agreement with
Ritort’s result [3]. However, the fact that e0.693∼ 1.9997. . . strongly suggests that for large
N the exponential part is the same as in our lower bound (3). Using this assumption we
analysed the quantityr = τN(N)/2N as a function of 1/N and we found that for largeN
we haver = (1/2) + (α/N) whereα ∼ 0.5. Thus, the asymptotic behaviour ofτN(N) is
τN(N) = (1+ (α/N))2N−1. The main conclusion which one can draw from our analysis is
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Figure 1. Logarithm of the absorption timeτN (N) (∗) as a function ofN . We also present the
logarithm of the average time needed to placeN balls in two boxesτ (2) (�) and in four boxes
τ (4) (◦) plotted as a function ofN .

that the time scale of the absorption time in Ritort’s model is the same as that in the 2-urn
model.

To show that putting allN balls in one box is indeed the longest process we also
measured the averaged time needed to place all balls in two non-empty boxes (τ (2)) and in
four non-empty boxes (τ (4)). Logarithms of these quantities as functions ofN are also shown
in figure 1. From figure 1 it is clear thatτ (2) andτ (4) also diverge exponentially withN but
much slower thanτN(N). Our estimations areτ (2) ∼ 1.18 e0.390N andτ (4) ∼ 3.55 e0.196N .

The fact thatτ (2) becomes negligibly small comparing toτN(N) explains why the hybrid
algorithm is much faster than standard simulations (forN = 40 the efficiency increases about
65 000 times and standard simulations are simply impossible).

Although static properties of Ritort’s model are very simple and solvable, its dynamics
which shows quite interesting behaviour most likely cannot be studied exactly [3, 4]. Our
analysis shows that an important property of Ritort’s model, namely exponentially diverging
absorption time, appears actually in a much simpler model. It is thus interesting to examine
if one can construct a simpler analogue of Ritort’s model which would be solvable also
with respect to the dynamics.

The research described in this present paper is supported by the grant KBN 8 T11F 015 09.
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